

A Brief Overview Of Seismic Isolation Bridge Projects

Presented by:

Sylvain Montminy, P. Eng., ing. Structures Division Manager and Senior Principal with Delcan

May 26th, 2011

Seismically Evaluated Bridges

Multi-modal Spectral Analysis and Time Histories

Workshop on the Seismic Isolation and Damping of Bridge Structures

Multi-modal Spectral Analysis (Lifeline and Emergency Route Bridges)

- Macdonald Cartier Bridge
- Lower Liard Suspension Bridge
- Bytown Bridges
- Heron Road Bridges
- Pretoria Avenue Lift Bridge
- Lemieux Island Bridges
- Madawaska River Bridge
- King Edward Avenue Redpath Road Overpass
- Bainsville Road Highway 401 Underpass
- Township Road Highway 401 Underpass
- Sutherland Creek Highway 401 Bridge
- Westley Road Highway 401 Underpass
- County Road 2 Highway 401 Underpass

Time History Analysis (Lifeline and Emergency Route Bridges)

- Heron Road Bridges
- A25 Main Cable Stayed Bridge

Seismic Bridges Designs using Isolation New Bridges and Retrofitting of Existing Bridges

CSRN RCRP

Workshop on the Seismic Isolation and Damping of Bridge Structures

New Bridge Designs using Seismic Isolation

- Regional Road 22 Highway 417 Underpass
- Strandherd Armstrong Bridge
- King Edward Overpasses
- Bytown Bridges
- A25 Main Cable Stayed Bridge

Seismic Retrofitting of Existing Bridges using Isolation

- Heron Road Bridges
- Lemieux Island Road and Pipeline Bridges

BYTOWN BRIDGES

Ottawa River

Residence of the Prime Minister of Canada

Bytown Bridges Rideau Falls

Rideau River

Residence of the Governor General of Canada

ORIGINAL BYTOWN BRIDGES

General Info Year Built: 1954 Spans: 3 spans each Total Length: North Bridge - 81 m (266 ft) South Bridge - 69 m (226 ft) Total Width: 19.9 m (65 ft) Superstructure: 18 lines of pre-cast prestressed "T" Girders Substructure: - Wall type concrete piers on bedrock - Concrete facing over old 1885 masonry abutments

South Bytown Bridge – East Elevation

BRIDGE CONDITION

Repair History

- 1975 Major Rehab (repairs to girders & addition of new concrete topping)
- 1990 Evaluation recommends to load post the bridges and replace them within 5 years
- 1997 & 2001 Emergency removal of failing exterior girders

Observed Deteriorations

- Widespread concrete scaling, delamination & spalling;
- Corrosion of reinforcing steel & prestressing tendons;
- Failed bearings & exp. joints;
- Damaged railing (not to code)
- Impending failure of several girders on South Bridge.

GENERAL SITE SEISMICITY

- Zonal Acceleration Ratio, A of 0.20
- Seismic Performance Zone 3
- Peak ground acceleration 0.16 to 0.23 g
- Site Coefficient, S of 1.0

Ottawa

DESIGN SEISMIC LOAD

Emergency-Route Bridge

- Emergency vehicles access; Moderate Damage
- 10% probability of exceedance in 50 years (return period of 475 years)
- Importance Factor, I of 1.5
- **Seismic Design Spectrum**

 $C_{sm} = \frac{1.2 \cdot A \cdot I \cdot S}{T_m^{2/3}} \le 2.5 \cdot A \cdot I$

C_{sm} is the Seismic Response Coefficient (g)
 T_m is the Period of Vibration (s)

WHY REPLACE & NOT REHAB

Why Full Replacement of Pier

- Preliminary costing revealed the full replacement of the piers to be slightly less costly than the previously described rehabilitation;
- The time required to undertake the required chloride extraction was not feasible due to schedule constraints, and;
- Full replacement allowed for some flexibility with the span layout and pier widths in order to optimize the design.

PREFERRED DESIGN CONCEPT

- **Preferred Superstructure Pre-cast Box Girders**
- Selected as it best satisfied all of the evaluation criteria:
- No requirements for falsework for construction;
- Shorter construction period due to pre-cast;
- No reduction in freeboard, and;

No perching provision for birds.

SUBSTRUCTURE SEISMIC DESIGN

Issues with Conventional Seismic Design

- Very short, wide and stiff piers (no ductility);
- Need 82 rock anchors at fixed pier (8 m deep).
 Using Seismic Isolation Bearings
- Share the load to all substructure elements;
- Dampen seismic loading & minimize demand on structural members.

BASE ISOLATION ADVANTAGE

Changes to Seismic Response Coefficient (C_{sm})

Loose the Importance Factor (I)

– CHBDC indicated : "design philosophy for isolated bridges already ensures a level of performance for all bridges which is comparable to that required for conventional Lifeline and emergency-route bridges for the design earthquake."

Gain Damping Coefficient (B)

 $C_{sm} = \frac{1.2 \cdot A \cdot I \cdot S}{T_{m}^{2/3}} \le 2.5 \cdot A \cdot I \quad \text{(CHBDC 4.4.7.1)}$

BASE ISOLATION ADVANTAGE

Changes to Seismic Response Coefficient (C_{sm})

Loose the Importance Factor (I)

 CHBDC indicated : "design philosophy for isolated bridges already ensures a level of performance for all bridges which is comparable to that required for conventional Lifeline and emergency-route bridges for the design earthquake."

Gain Damping Coefficient (B)

 $C_{sm} = \frac{1.2 \cdot A \cdot I \cdot S}{T_{m}^{2/3}} \le 2.5 \cdot A \cdot I \quad \text{(CHBDC 4.4.7.1)}$

BASE ISOLATION ADVANTAGE

Changes to Seismic Response Coefficient (C_{sm})

Loose the Importance Factor (I)

– CHBDC indicated : "design philosophy for isolated bridges already ensures a level of performance for all bridges which is comparable to that required for conventional Lifeline and emergency-route bridges for the design earthquake."

Gain Damping Coefficient (B)

 $C_{sm} = \frac{A \cdot S_i}{B \cdot T_e} \le 2.5 \cdot A$

(CHBDC 4.10.6.1)

COLD TEMPERATURE TESTING OF SEISMIC ISOLATION BEARINGS

Performance Requirements

• Seismic loading transferred to substructure at -34°C must not exceed 130% the load at 15°C.

Testing of Seismic Bearings

- Seismic performance test on full size production bearings;
- Conditioning bearings to -34°C in freezer for 14 days;
- Subjected to design dead loads with 70% of the design seismic displacements.

HYBRID PRECAST / CAST IN PLACE

What is this Design Concept?

- 1 Isolation Bearing per line of girders per pier;
- Girders initially on blocks;
- Final support through pier diaphragms cast monolithic w/ deck & integral w/ girders.
- Why this Innovative Concept?
- Reduce the total quantity of expensive isolation bearings;
- Reduce the required width of piers.

CONSTRUCTION TIMELINE

Seismic Rehabilitation of the Heron Road Bridge *Bridge Location*

Seismic Rehabilitation of the Heron Road Bridge Structure Description

- Year Built: 1966/1967
- Spans: Twin structures seven spans each
- **Traffic:** Three lanes in each direction
- Length: 267 m (North Structure) / 276 m (South Structure)
- Superstructure: Cast-in-place Post-Tensioned voided concrete deck cantilevered to support three suspended spans
- Substructure: Six intermediate piers and abutments at ends

Seismic Rehabilitation of the Heron Road Bridge Structure Description

Seismic Rehabilitation of the Heron Road Bridge General Site Seismicity

- Zonal Acceleration Ratio, A of 0.20
- Seismic Performance Zone 3
- Peak ground acceleration 0.16 to 0.23 g
- Emergency-route Bridge, Importance Factor, I =1.5

Seismic Rehabilitation of the Heron Road Bridge Site Conditions

Structure No.	Support	Soil Profile Type / Support	Analytical Model Soil Profile Type	Site Coefficient, S	Site Coefficient for Seismic Isolation ,Si
SOUTH STRUCTURE - East Bound Lane					
1	West Abutment	III	Ш	1.5	2.0
	Pier S1	III			
2	Pier S2	III	III	1.5	2.0
	Pier S3	II			
3	Pier S4	I	Ι	1.0	1.0
	Pier S5	Ι			
4	Pier S6	II	ΙΙ	1.2	1.5
	East Abutment	II			
NORTH BRIDGE - West Bound Lane					
1	West Abutment	III	Ш	1.5	2.0
	Pier N1	III			
2	Pier N2	III	Ш	1.5	2.0
	Pier N3	III			
3	Pier N4	I	Ш	1.2	1.5
	Pier N5	II			
4	Pier N6	II	П	1.2	1.5
	East Abutment	II			

Seismic Rehabilitation of the Heron Road Bridge Seismic Evaluation - Analysis

Workshop on the Seismic Isolation and Damping of Bridge Structures

- Multi-modal analysis
- Simple Spine Model
- Special consideration for multi-gap bridge

Dual-model tension / compression elastic modal analysis procedure

- Tension model: joints are provided with linear elastic springs that model the opening of the gap
- Compression model: superstructure segments are rigidly connected, modeling the closing of the gap

Special Considerations for different Soil Profile Types

- Soil Type III was used to model the entire structure
- Each bridge is considered as a series of four individual structures with suspended spans in between and using the specific soil profile types.

Seismic Rehabilitation of the Heron Road Bridge

Seismic Evaluation – Response Spectra

CSRN

RCRP

Seismic Rehabilitation of the Heron Road Bridge Seismic Evaluation - Results

Workshop on the Seismic Isolation and Damping of Bridge Structures

Sub-structure

- Piers and abutments are overstressed under seismic loading
- Piers are expected to rock under seismic loading
- Piled foundation and spread footings do not provide sufficient resistance to overturning moments associated with seismic forces

Suspended Spans

Significant risk of unseating and full collapse of suspended spans.

Seismic Rehabilitation of the Heron Road Bridge

Seismic Rehabilitation Options

Workshop on the Seismic Isolation and Damping of Bridge Structures

Piers & Abutments

Strengthening vs. Seismic Isolation

Suspended Spans

Flex slab system vs. Restrainers / Lock-up Devices (LUD's)

Retrofit was designed using multi-modal response spectrum analysis

Seismic Rehabilitation of the Heron Road Bridge Seismic Retrofit Validation

- Nonlinear time history analysis using site specific excitations was used to validate the preliminary design for the following reasons:
 - Hysteretic isolators and lockup devices are highly nonlinear devices not always accurately modeled using linear methods such as response spectrum analysis
 - Site conditions ranged from Soil Type I (rock) to Soil Type III (soft soil), suggesting the need for different excitations for each substructure

Seismic Rehabilitation of the Heron Road Bridge

Site-specific time-history analysis

and Damping of Bridge Structures

Site-specific ground motions developed using the 4th generation seismic hazard maps developed by Geological Survey of Canada (GSC)

Standard design earthquake having a probability of exceedance of 10% in 50 years i.e. 475 return period.

A target site-specific spectrum, as developed based on 2005 NBCC for Site class B was used to develop five sets of spectrum compatible ground motions.

The spectrum compatible ground motions for Class B rock were modified using the software "Proshake" to account for the overburden effects and resulted in the time histories used as an input for the structural analysis.

Seismic Rehabilitation of the Heron Road Bridge

ge

Workshop on the Seismic Isolation and Damping of Bridge Structures

Seismic Analysis continued

Seismic Rehabilitation of the Heron Road Bridge *Time-History Analysis*

Workshop on the Seismic Isolation and Damping of Bridge Structures

- Non-linear time history analysis using OPENSEES
- Seismic isolation bearings modeled as a bilinear hysteretic element
- Bumper restrainers modeled using elastic perfectly plastic gap material
- Time histories scaled to CHBDC Soil Type I Seismic isolation spectrum

Time History of Accelerations Scaled to 0.2 g using SHAKE Program

Seismic Rehabilitation of the Heron Road Bridge Conclusions

- Seismic isolation reduced the seismic demand significantly.
- Nonlinear site specific time history analysis resulted in the optimization of the seismic isolation / restrainer system.
- Current CHBDC time history analysis requirements call for usage of excitations compatible with conventionally fixed response spectra. This presents a problem with isolated structures.
- Response spectrum and time history analyses complement each other well, and a design process using both has many advantages.

Seismic Rehabilitation of the Heron Road Bridge *Questions*

Workshop on the Seismic Isolation and Damping of Bridge Structures

Thank you

Sylvain Montminy, P. Eng., ing. - Delcan

Acknowledgements:

Jack Ajrab, P. Eng. - Delcan

